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Abstract The paper concerns the modelling of very large pontoon-type floating structures by thin beams
and plates of shallow draft, excited by regular waves. It is shown how the classical theory of hydroelas-
ticity, involving the concepts of added mass and damping associated with the structural responses, may
be reconciled with more recent formulations. In the latter, coupled equations for displacement and total
hydrodynamic pressure are solved directly, without the breakdown into diffraction and radiation problems.
A numerical model is adopted based on a Galerkin approach, and the nature of the various components
of hydrodynamic loading on a shallow draft beam is investigated. The approach is then extended to the
case of thin plate in waves, where the hydrodynamic effects are fully three dimensional.
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1 Introduction

I first encountered Nick Newman at the International Symposium on the Dynamics of Marine Vehicles
and Structures in Waves, in 1974 at University College London. My interests then, and the paper I pre-
sented, concerned hydroelasticity [1,2]. His paper [3] was on wave-drift forces, and led to the widely used
“Newman approximation” for low-frequency drift forces. Subsequently he has published a number of
papers on hydroelasticity [4,5] (and I have had interests in drift forces). So it seemed appropriate that my
contribution to this celebratory volume should return to the subject of hydroelasticity.

It is a subject which has attracted considerable interest in the last ten years, not least in the context of
Very Large Floating Structures and the major activities related to the Megafloat project in Japan. This has
encouraged the attention of hydrodynamicists around the world, who have been intrigued by the fasci-
nating interaction of water waves and elastic waves in plates. The size of the structures, as envisaged for
example for floating airports and spanning many wavelengths, poses substantial challenges in the area of
numerical analysis. Several groups have contributed to much progress having been made in development
of the tools for assessment of complex designs. Others have provided understanding of the underlying
hydroelastic phenomena by applying advanced mathematical techniques to simple archetypes such as
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beams and semi-infinite plates. This paper lies somewhere between those two approaches, and attempts
through some relatively simple analysis to bring together the modelling of beams and plates in order to shed
a little light on the characteristics of certain mathematical models and the influence of three-dimensional
effects.

Most of the recent analyses of floating plates have been based on the procedure which formulates
coupled equations for the deflection of the plate and the pressure on its underside. In some approaches
these have been manipulated further to obtain a higher-order differential equation for the deflection alone.
The alternative classical procedure of separating the problem into diffraction and radiation components,
as used universally for seakeeping analyses and extended for hydroelastic applications by Bishop and
Price [6], is thereby avoided. The present paper considers how the two procedures relate to each other.
It also examines some features of the two simple idealised models which have been extensively invoked
to characterise the behaviour of very large floating platforms in waves, namely the free–free beam and
the rectangular plate with free edges. While the restriction to behaviour in two dimensions is a plausible
approximation for modelling the structural dynamics of a floating plate, it is not clear that the corresponding
two-dimensional hydrodynamic model will provide appropriate insight into the water–wave interactions
with a slender floating plate. In order to investigate this, a very simple numerical method is adopted here.
We first consider the beam with two-dimensional hydrodynamics, and then extend the method to the case
of a rectangular plate and three-dimensional hydrodynamics.

2 Analysis of an elastic beam

We adopt the formulation described by Khabakpasheva and Korobkin [7] and Eatock Taylor [8]. The
governing equations are first summarised. The origin of the coordinate system Oxz is taken in the beam,
with z positive upwards. The water is of depth d. In the two-dimensional problem the beam is assumed
to have unit width. We non-dimensionalise the spatial coordinates by the length L of the beam, and time
by

√
L/g, where g is the acceleration due to gravity. The dimensionless water depth is δ = d/L. A sinu-

soidal wave of amplitude AI and non-dimensional wave number k is assumed to be incident on the beam,
propagating from right to left, and the complex amplitude of the deflection of the beam (non-dimensiona-
lised by AI) is w. The hydrodynamic pressure on the underside of the beam has complex amplitude p,
non-dimensionalised by AIρg, where ρ is the density of the fluid.

From the equation of motion of the beam, based on Euler–Bernoulli theory, we find that w satisfies:

β4 d4w
dx4 − µKw = p, (1)

where K is the non-dimensional wave number in infinitely deep water given by the dispersion equation
K = k tank kδ; and for a uniform beam of flexural rigidity EI and draft h we have

β4 = EI
ρgL4 , µ = h

L
.

We ignore structural damping. As shown in [7], a second equation may be obtained by writing Bernoulli’s
equation for the pressure p in terms of a velocity potential φ and w. Thus
p
ρ

= −iωφ − gw on z = 0, (2)

where ω is the wave frequency. The draft h is assumed to be small, so that this pressure on the underside of
the plate is taken to be at z = 0. The potential includes the incident wave and scattered wave components,
and the latter may be expressed as an integral through use of Green’s identity with a Green-function
G(x, xo). The result is

p(x)+ K
∫ 1

0
G(x, x0)p(x0)dx0 = eikx − w(x). (3)
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Solution of the coupled equations (1) and (3) yields the hydroelastic behaviour of the beam. More complex
cases of non-uniform beams, or beams with hinges, may readily be analysed using a similar formulation.
The approach is very convenient. It appears, however, to be rather different from the classical hydroelastic
formulation (e.g. [6]), in which the hydrodynamics are written in terms of diffraction and radiation prob-
lems, with appropriate definitions of added mass and added damping linked to some specified generalised
coordinates. One of the aims of this paper is to show how these two approaches are linked.

First we review the simple numerical method used here to obtain a selection of results. It is described at
more length in [8], being based on a Galerkin formulation with the same assumed functions to represent the
deflection w and the pressure p. These are the rigid-body modes of the beam and a finite set of sinusoidal
functions, which were shown in [9] to be very convenient for representing the dynamics of a free–free
beam. Thus we take

w(x) =
N∑

n = 0

wnψn(x), p(x) =
N∑

n = 0

pnψn(x), (4)

where

ψ0(x) = 1; ψ1(x) = 1 − 2x; ψn+1(x) = sin nπx, (n � 1). (5)

Note that the same number of terms is used in the series for w and p.
These are now substituted in (1) and (3), each is multiplied by ψm(x), and integrated over the length of

the beam. Using the “weak” formulation of the Galerkin method, we integrate by parts twice, and equate
the resulting weighted residuals to zero. The boundary terms at x = −1, 1 resulting from these integrations
by parts are zero. The final result, from [8], is
[−B + KµA A

A A + KD

] [
W
P

]
=

[
0
PI

]
, (6)

where the vectors W and P represent the unknown coefficients wn and pn, and the terms of the other
matrices and vector PI are defined as follows:

Bmn = β4
∫ 1

0
ψ ′′

mψ
′′
n dx; Amn =

∫ 1

0
ψmψndx; Dmn =

∫ 1

0

∫ 1

0
ψmψnGdx dx0; PI

m =
∫ 1

0
eikxψm dx. (7)

PI corresponds to the pressure in the incident wave, the Froude–Krylov term.
The Green-function G is given [7] by:

G(x, x0) = −ike−ik|x−x0|

δ(k2 − K2)+ K
+

∞∑

j = 1

sje−sj|x−x0|

δ(s2
j + K2)− K

, (8)

where sj are the imaginary roots of the dispersion equation. Apart from the need to truncate the series in
(8), all the integrals in (7) may be obtained in closed form [8].

Solution of the linear algebraic system in (6), and substitution of wn and pn in the assumed forms (4),
yields the required approximations for the deflection of the beam w(x) and the total hydrodynamic pressure
p(x). The solution has been obtained without any consideration of separate diffraction and radiation prob-
lems, and indeed it is not immediately evident from the system of equations (6) where the hydrostatic
effect is included. We now consider some special cases which together yield insight into how terms such as
added mass and damping feature in the above formulation.

We consider three sub-problems. In problem I we examine response to an imposed external force in
the absence of waves. Such forcing would provide an additional term on the right-hand side of (1), which
would lead to a non-zero vector, say F, replacing the vector of zeroes on the right-hand side of (6). Thus,
for a distributed force f (x), we have the terms

Fm =
∫ 1

0
f (x)ψm(x). (9)
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We may then eliminate P using the second set of equations in Eq. 6, and obtain the response to the external
forcing as the formal solution of

[−B + KµA + AH]W = F, (10)

where

H = −(A + KD)−1A. (11)

In a similar manner, in problem II we obtain the force on the beam when it is oscillated (again in the
absence of incident waves) by a prescribed displacement. With a model approximated by, say, (N + 1)
coefficients wn in (4), we may solve (N + 1) problems, each defined by the imposition of a unit value of wn

with all the other coefficients of the series for w(x) set to zero. Let us define the nth column of a matrix
Q as the solution to the coefficients of the series for p(x) corresponding to the imposed displacement
w(x) = ψn(x). Then, from (6), we find

Q = H, (12)

using the definition in (11).
Consider now the hydrodynamic loading on the beam when it responds to external forcing according

to (10). This corresponds to the hydrodynamic pressure p in (1), which in the discretised form of (10) is
represented by the term AHW : this is precisely the term AQW obtained in problem II. It must therefore
correspond to both radiation terms (added mass and damping) and the hydrostatic restoring force. The
latter, following from (2), is –AW. Hence the radiation term is given by A(Q+I)W where I is the identity
matrix. Expressed in the classical form, therefore, Eq. 10 would be written as:

BW − KµAW − A(Q + I)W + AW = F.
elastic stiffness + inertia term + radiation force + hydrostatic force = external force

(13)

Correspondingly, the approximated radiation force pR would be expressed as:

pR(x) =
N∑

m = 0

ψm(x)
N∑

n = 0

(Qmn + 1)wn, (14)

analogous to the approximation for p in (4).
For problem III, diffraction by a fixed beam, we proceed in a similar manner. We set W = 0 in (6) and

solve for the total diffraction pressure term, PD, obtaining:

PD = (A + KD)−1P I. (15)

Note that PD includes the effect of both incident and diffracted waves: it arises from the total pressure in
(2)—in this case with w = 0.

Finally, using the above results, we may rewrite the solution for the floating plate in waves. From the
second part of (6), and using (15), we have

(A + KD)−1AW + P = P D. (16)

Inserting (11) and (12) into (16) and transferring terms from one side to the other side of the equation,
we obtain:

P = P D + (Q + I)W − W. (17)

Hence after changing the signs of each term, the first part of (6) can be written in the form:

BW − KµAW − A(Q + I)W + AW = AP D.
elastic stiffness + inertia term + radiation force + hydrostatic force = wave force

(18)



J Eng Math (2007) 58:267–278 271

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

de
fle

ct
io

n

de
fle

ct
io

n

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

N=10
N=20

(a) (b)

Utsunomiya

Fig. 1 Modulus of the deflection of a beam, from [T. Utsunomiya, Private communication (2003)] and calculated with
different numerical models. (a) K = 19.71; (b) K = 4.870
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Fig. 2 (a) Real and (b) imaginary parts of diffraction force on a beam, in three water depths

3 Beam results

Using the above-mentioned methodology, results have been obtained for a case considered by Wu et al.
[10]. They have shown comparisons between experimental results for a beam spanning across the width of a
long flume, and a numerical approach based on the eigenfunction expansion matching technique. Broadly
speaking the experimental data confirmed their numerical approach, based on using up to 30 terms of
the eigenfunction series. Subsequent work [T. Utsunomiya, Private communication (2003)] showed that
at least 50 terms were required to obtain converged results to plotting accuracy for the cases considered
in [10]. Those converged results are compared in Fig. 1 with those calculated using the theory of the
previous section, with different numbers N of sinusoidal functions. The results correspond to a beam with
the non-dimensional parameters δ = 0.11,µ = 0.836 × 10−3,βref = 4.8025 × 10−6, and with the series for
the Green-function truncated at 45 terms. The modulus of the displacement of the beam, |w|, is shown in
Figs. 1(a) and (b), respectively, for two wave periods, corresponding to non-dimensional wave numbers
K = 19.71 and K = 4.870. It is seen that, for these cases, N = 20 provides satisfactory agreement in the
graphs with the converged results based on [T. Utsunomiya, Private communication (2003)].

Next we consider the breakdown of the hydrodynamic force into diffraction, radiation, and hydrostatic
terms, as discussed above. Figure 2 shows the real and imaginary parts of the wave forces (incident plus
diffracted) for the same beam in the wave corresponding to K = 19.71, for the non-dimensional water
depths δ = 0.11, δ = 0.0731 and δ = 0.3188 . These are equivalent to depth-to-wave-length ratios in the
range 0.25 to 0.5, the latter being effectively infinite depth. A notable feature of these results is that the
wave force does not exhibit oscillations corresponding to the incident wave length (for δ = 0.11, the dimen-
sionless value of the wave length is 0.311). The effect of diffraction by this shallow draft beam roughly
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Fig. 3 Real and imaginary parts of hydrostatic, radiation and total hydrodynamic force on the beam of flexibility βref, for
K = 19.71
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Fig. 4 As for Fig. 3, but with β = 10−3βref

cancels the incident wave at its downwave end (the left-hand side of the figure); the magnitude of the total
diffraction force increases almost monotonically towards a maximum amplitude at the upwave end.

Figure 3 shows the real and imaginary parts of the hydrostatic, radiation and total hydrodynamic forces
for the case considered in [10] and Fig. 1, again for K = 19.71. Corresponding results are illustrated for
a more flexible beam with β = 10−3βref in Fig. 4, and for a stiffer beam, β = 103βref , in Fig. 5. The
negative of the hydrostatic force distribution, the left-hand frame in each case, is the deflected shape, so
it is unnecessary to plot the latter separately. The total force, the right-hand plot in each case, has been
calculated in two ways: it is given directly by the series for p given in (4); and it is obtained from the sum
of the diffraction, radiation and hydrostatic forces shown in the other figures. The graphical results are
seen to be the same from the two approaches. These figures confirm the major influence on the responses
of the beam of its elastic properties over this range. For the very flexible case shown in Fig. 4, the beam
essentially follows the incident wave. At the downwave end, where the diffraction force is seen in Fig. 2
to tend to zero, the radiation force is roughly 180◦ out of phase with the hydrostatic force (implying low
hydrodynamic damping). The total hydrodynamic force is seen to be very small along the whole length of
the beam. The cancellation effects seen here suggest the importance of accurately calculating the separate
components, if they are evaluated independently.

4 The plate model

We now extend the previous analysis to the case of a rectangular plate of length L and width B. We will
here make the simplification that the plate is rigid in relation to bending about axes parallel to the (long)
sides of length L. The flexural rigidity is taken to be EI per unit width of the plate about axes parallel to
the (short) sides. The (small) draft is again h. The coordinate system Oxyz has origin O at the centre of the
plate, with Ox directed parallel to the long side and Oz measured positive upwards from the water-plane
area.
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Fig. 5 As for Fig. 3, but with β = 103βref

The equation governing the motions of the plate, analogous to (1), is:

β4 d4w
dx4 − µKw =

∫ 1

−1
p(x, y)dy, (19)

where now the coordinates x and y are non-dimensionalised by L/
2 and B/

2, respectively. Subsequently
we use an aspect ratio defined by b = B/

L. The pressure is here non-dimensionalised by AIρgB, and the
definitions of β4 and µ are the same as those given after (1). The non-dimensional wave number is now
K = kL/2.

Proceeding as for the beam, we obtain

p(x, y)+ K

1∫

−1

1∫

−1

G(x, y; x0, y0)p(x0, y0)dx0dy0 = e−iKx − w. (20)

Here G is the three-dimensional Green-function for points on the free surface, given [11] by

G(x, y; xo, yo) = −K
4π

{
2
z

− π [H0(z)+ Y0(z)+ 2πJ0(z)]
}

, (21)

where z = K
[
(x − x0)

2 + (y − y0)
2]1/2. The functions H0, J0 and Y0 are the zeroth-order Struve function

and the zeroth-order Bessel functions of the first and second kind, respectively.
Equations 19 and 20 are the coupled equations for the plate deflection w and pressure p, which we again

solve by the Galerkin method. We use assumed functions in the x- and y-directions as follows:

w(x) =
M∑

m=0

wmψm(x), p(x, y) =
M∑

m=0

N∑

n=0

pmnψm(x)χn(y), (22)

where

ψ0(x) = 1 = χ0(y), ψ1(x) = x, ψm(x) = sin(m − 1)
π

2
(1 + x) , m � 2, χn(y) = cos(2n − 1)

π

2
y, n � 1.

(23)

This choice is governed by the restriction here to responses of the plate in head seas.
As before, the representations of w and p in (23) are substituted in (19), the result multiplied by ψp(x),

and integrated over the length of the plate. The same substitution is made in (20)), which is then multiplied
by ψp(x)χq(y) and integrated over the length and width of the plate. The first of the resulting equations is
then integrated by parts twice in the x-direction. This leads to the following coupled equations for wm and
pmn:

M∑

m=0

[

β 4
∫ 1

−1
ψ ′′

mψ
′′
p dx − K

∫ 1

−1
ψmψpdx

]

wm −
M∑

m=0

N∑

n=0

[∫ 1

−1
ψmψpdx

∫ 1

−1
χndy

]

pmn = 0, (24)
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M∑

m=0

[∫ 1

−1
ψmψpdx

∫ 1

−1
χqdy

]

wm +
M∑

m=0

N∑

n=0

[∫ 1

−1

∫ 1

−1
ψmψpdx

∫ 1

−1
χnχqdy

+bK
∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
Gψmψpχnχqdxodyodxdy

]

=
∫ 1

−1
ψpe−iKxdx

∫ 1

−1
χqdy. (25)

In matrix form these become:
[−C + KµA R

RT U + KD

] [
W
P

]
=

[
0
E

]
. (26)

This, of course, has a similar form to (6) for the two-dimensional problem above, but with the terms defined
as follows:

Wm = wm, P(n−1)M+m = pmn, Cpm = β4
∫ 1

−1
ψ ′′

mψ
′′
p dx, Apm =

∫ 1

−1
ψmψpdx,

Rpm′ = 1
4

∫ 1

−1
ψmψpdx

∫ 1

−1
χndy, m′ = (n − 1)M + m,

Up′m′ = 1
4

∫

1
ψmψpdx

∫ 1

−1
χnχqdy, p′ = (q − 1)M + p,

Dp′m′ = b
16

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
Gψmψpχnχqdx0dy0dxdy, PI

p′ = 1
4

∫ 1

−1
e−iKxψpdx

∫ 1

−1
χqdy. (27)

By solving the matrix equations (26) for any particular frequency ω, it is then possible to obtain the plate
deflection w and the hydrodynamic pressure p. The accuracy of the solution will depend on the number
of terms M and N in the assumed solution, and on the accuracy of the integrations. For the rectangular
plate, all of the integrals may be obtained analytically, expect for that involving the Green-function, which
requires special treatment in view of the inherent singularity. This is discussed next.

5 Numerical evaluation of the Green-function integral

The Green-function G(z) contains the singularity 1/z and also, because of the second-kind Bessel function
Y0(z), the logarithmic singularity (2/π) log z. Fortunately, difficulties associated with these may be avoided
through partial analytical integration. The two key results, for a point (ξ , η) in the first quadrant, are:

I21(x, y) = K
∫ 1

η

∫ 1

x

dx0dy0

z
= (1 − x) log

[
α + b(1 − y)

1 − x

]
+ b(1 − y) log

[
α + 1 − x
b(1 − y)

]
,

I22(x, y)=
∫ 1

η

∫ 1

x
log z dxodyo=1

2
(1 − x)2θ + 1

2
b2(1 − y2)

(π
2

− θ
)

− b
2
(1 − x)(1 − y)

[
3 − 2 log(Kα)

]
,

(28)

where

α2 = (1 − x)2 + b2(1 − y)2, tan θ = b(1 − y)
1 − x

.

The quadruple integrals are obtained by integrating these with respect to x and y over the rectangle. For
example, over a square (b = 1), we can obtain for the rigid-body heave mode (m = n = p = q = 0):

I41 = K
∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

1
z

dxodyodxdy =
∫ 1

−1

∫ 1

−1
I21(x, y)dxdy = 23.78568,

I42 =
∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
log z dxodyodxdy =

∫ 1

−1

∫ 1

−1
I22(x, y)dxdy = −1.791033 + 16 log K. (29)
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The latter double integrals are obtained by straightforward numerical integration using the mathematical
package Mathcad.

More generally, we may use I21, and I22 to deal with the singularities in the expression for Dp′m′ in (27),
involving the frequency-dependent Green-function multiplied by the basis functions. We use:

Imnpq =
∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
Gψmψpχnχqdx0dy0dxdy

= −1
2π

∫ 1

−1

∫ 1

−1
4
[
I21(x, y)− K I22(x, y)

]
ψm(x)χn(y)ψp(x)χq(y)dxdy

−K
∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

{
1

2π

[
1
z

− log z
]

[
ψm(x0)χn(y0)− ψm(x)χn(y)

]

−1
4

[
H0(z)+

(
Y0(z)− 2

π
log z

)
+ 2π iJ0(z)

]
ψn(x0)χn(y0)

}
ψp(x)χq(y)dx0dy0dxdy. (30)

The fourfold integrals still have to be evaluated numerically, for which it is convenient to use high-order
Gaussian quadrature. The coordinates of the integration points and the weights are calculated using the
algorithm given by Recktenwald [12]. By choosing the integration order NG in one direction to be different
from that in the other (e.g. NG and NG − 2 where NG is even), we may avoid coincidence of the source
and field points in the Green-function (as suggested in [11]).

6 Plate results

First the numerical approach for dealing with the integrals has been checked by making a comparison with
some results by Campbell [13] for flexible diaphragms. The integral I4 corresponds to the added mass of a
rigid diaphragm oscillating in a direction perpendicular to an infinite rigid plane (the “closed edge” case
described by Campbell). He evaluated the added masses for a range of deflected shapes of diaphragms
using a panel method (with constant panels). Several aspect ratios were calculated, and he then provided a
parametric fit to allow results to be estimated for any aspect ratio. Thus, for a plate with side lengths L × B,
the added mass, M, corresponding to deflection in some prescribed mode is written by Campbell in a form
equivalent to:

M = ρLB2γ (1 + α1τ + α2τ
2 + α3τ

3), (31)

where τ = log(L/B). Here we have used a similar parametric fit (for two of the cases), but calculated the
added mass for each geometry and oscillation mode ψ(x) using the simple methods described above. The
first, (i), uses the analytical result for the double integral I21 in (28) followed by a numerical integration in
Mathcad, while the second, (ii), uses Gaussian integration to perform the fourfold integral, with different
numbers of integration points. The results are compared with those of Campbell [13] in Table 1. The results
from [13] are designated (iii). Three cases are shown, corresponding to a rigid-body displacement of the
plate, a parabolic distortion in one direction, and distortion of a square plate (τ = 0) in the ninth sinusoidal
mode. The approach represented by (30) was used to evaluate the integral in the latter cases. Reasonable
agreement is found with the published results, and satisfactory convergence.

Next we consider a selection of results for waves incident on a square plate, and on a rectangular plate of
aspect ratio 0.2, in water of infinite depth. We takeµ = 1.67×10−3 and for the base caseβref = 0.0916×10−3.
We also consider stiffer plates of the same geometries, for which β = 103βref. The rectangular plate having
the latter stiffness is effectively the same as that considered by Kashiwagi [14], though in that case the
plate was in shallow water depth. In all cases the wave frequency corresponds to K = 6.273, which gives a
wavelength about half the length of the plate.

Figure 6 shows results for the square plate, on the left showing the reference case, and on the right the
stiffer plate. In each case 5 lines are plotted, representing the results obtained from different numerical
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Table 1 Parameters for
added masses of a
rectangular diaphragm:
(i) semi-analytical; (ii) by
Gauss quadrature (with
different numbers of
integration points),
(iii) from Campbell [13]

ψ(x) χ(y) Method—Gauss γ α1 α2 α3
points

1 1 (i) 0.9464 0.5024 0.0596 −0.0081
(ii)—64 0.9462 0.5022 0.0597 −0.0083
(ii)—32 0.9455
(ii)—16 0.9420
(iii) 0.944 0.508 0.058 −0.008

1 − x2 1 (ii)—64 0.4762 0.471 0.044 −0.006
(ii)–32 0.4777
(ii)—16 0.4789
(iii) 0.473 0.483 0.038 −0.005

sin 9π
2 (1 + x) 1 (ii)—64 1.326

(ii)—32 1.332
(ii)—16 1.366
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Fig. 6 Modulus of deflection of square plate, calculated with different numerical models: (a) reference plate; (b) stiffer
plate
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Fig. 7 Modulus of deflection of rectangular plate of aspect ratio 0.2, calculated with different numerical models: (a) reference
plate; (b) stiffer plate

models. Each is identified by the code n1n2n3, where n1 is the number of Gaussian points in the x-direction;
n2 is the number of functions in the x-direction; and n3 is the corresponding number in the y-direction
(these are one more than the numbers M and N in Eq. 22). It may be seen that increasing n1 from 32 to
64 has only a small effect on the results. As can be expected, convergence with respect to the number of
functions becomes quite sensitive at the ends of the plate.

Figure 7 shows the equivalent results for the rectangular plate. Again the increase in the number of
Gauss points does not change the results much for the parameters examined. A larger number of functions
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in the y-direction, however, is now seen to be necessary to achieve comparable accuracy. There is little
difference between the plots for cases 321206, 321606 and 321608.

7 Concluding remarks

The origin of this work was an attempt to shed some light on two facets of recent analyses of the hydroelas-
tic behaviour of very thin plates in waves. The first related to a reconciliation between two mathematical
models which have been developed over the last 30 years: one model poses the problem in terms of a
decomposition of the hydrodynamic behaviour into diffraction, radiation and hydrostatic components; but
it appears that this approach has not been much (if at all) used for the very-thin-plate problem. The other
approach couples the plate deflection and the total hydrodynamic pressure, with no explicit representation
of effects such as added mass and damping. In this paper we have used the second approach, but shown
how the diffraction and radiation terms may in fact be extracted from the coupled equations. This has been
illustrated for the case of a beam, using a simple scheme based on a Galerkin approximation to obtain the
numerical results. In the cases considered, the separate diffraction, radiation and hydrostatic components
are all much larger in magnitude than their combined effect.

The other facet of interest is the relationship between two- and three-dimensional analyses for the
floating-plate problem. It can be argued that the simple model of a beam provides some insight into the
complex hydroelastic phenomena exhibited by a long rectangular plate. But if the associated hydrodynamic
analysis is two-dimensional, the resulting response may be very different from what would be predicted
with a model in which three-dimensional hydrodynamic effects can be represented. This has been shown
here by comparing results from square and rectangular plates under the same conditions. It is clear that the
overall response of the floating plate is extremely sensitive to its aspect ratio. But the limiting case where the
plate width is extended to approach a case equivalent to the beam model has not been attempted, because
based on the very simple numerical method described here the number of terms required to provide an
adequate representation of the hydrodynamic behaviour in the transverse direction would appear to be
excessive. A more sophisticated approach could resolve that issue.
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